El astrobiólogo afirma que si hay bacterias que
pueden vivir en condiciones extremas en la Tierra, también puede
haberlas en otros planetas
Los humanos solo comemos una cosa, carbono orgánico; y solo respiramos otra, oxígeno. Así funciona la vida, "o eso creemos", asegura Ken Nealson, catedrático de Geobiología de la Universidad del Sur de California, en Estados Unidos, y astrobiólogo de la NASA.
"Sin embargo las bacterias comen todo tipo de materia (compuestos inorgánicos como el sulfuro, hidrógeno o amonio, entre otros), en realidad cualquier cosa de la que obtienen electrones, y pueden interactuar con cualquier elemento químico de la tabla periódica", subraya el microbiólogo.
En cuanto a lo que respiran, no es solo oxígeno, sino también CO2, sulfito, nitrato y otras sustancias. Incluso son capaces de aprovecharse de una roca sólida como sustituto del oxígeno, es decir, que pueden "respirar rocas", como afirman coloquialmente los científicos al hablar del transporte extracelular de electrones descubierto hace dos décadas y que sigue sin aparecer en los libros de texto.
"Años más tarde descubrimos que al quitar la roca del experimento y añadir electrodos, lo único que "respiran" estas mismas bacterias son los electrodos. Forman una capa a su alrededor y le proporcionan electrones, y por tanto energía", detalla Nealson. Como estos microorganismos pueden comer cualquier cosa, los científicos probaron con residuos humanos e industriales para producir electricidad. Y lo consiguieron.
Bacterias que purifican el agua
"Parece muy bonito para ser cierto, pero lo es, aunque no va a solucionar la crisis energética", advierte el experto estadounidense, quien añade que no solo se puede crear electricidad sino también purificar el agua y eliminar los contaminantes sin ningún soporte electrónico. El equipo de Nealson está intentando diseñar esta tecnología barata y ecológica en aldeas africanas donde la gente podría traer sus residuos cada día y obtener agua limpia a cambio.
Según el investigador, "en los próximos 5 o 10 años, veremos la primera aplicación legítima a este proceso", porque hay unas 15 empresas de todo el mundo que ya están intentando aplicarlo. "Es una buena tecnología verde que solo usa materiales biológicos como fuente, trabaja muy rápido y produce bastante energía".
Sin embargo, aún es necesario abaratarla si lo que se pretende es abastecer a todo un poblado de países empobrecidos. "Hay una parte muy barata, la del electrodo que no cuesta casi nada y las bacterias que son gratuitas (puedes cultivar cuantas necesites), pero la otra parte requiere platino en el electrodo, que es lo que cataliza el oxígeno convertido en agua", indica el investigador.
En el laboratorio de Nealson han obtenido recientemente esta misma reacción de electrones y oxígeno utilizando bacterias que se pueden poner en un cátodo (electrodo negativo del que parten los electrones) para eliminar el platino, lo que para el microbiólogo es "una gran victoria". Pero aún hay más, Nealson asegura que se podría conseguir todo un proceso bacteriológico con células solares, es decir, las bacterias se podrían alimentar de luz solar, y para ello no quedan más de 10 o 15 años. "Valdrá la pena esperar".
Hasta entonces, la microbiología deberá intentar descubrir lo que oculta el microscopio. Por ahora, gracias a mejores métodos moleculares para ver a las bacterias, los científicos han descubierto que "solo somos capaces de cultivar cerca del 0,1% de todas las bacterias que vemos en el microscopio", afirma el experto. Pero la pregunta que se hacen los microbiólogos es "¿qué hacen realmente las otras bacterias que no podemos cultivar?"
"Es completamente desconocido. Al mirar sus cromosomas se podría averiguar cómo actúan pero todavía no se ha probado; y no se puede demostrar si no se pueden cultivar", testifica Nealson.
Microorganismos extraterrestres
De los microorganismos que ya se conocen, lo que más sorprende a este microbiólogo que se niega a jubilarse aún es lo resistentes que son. Cuando Nealson empezó a estudiar microbiología, no podía imaginarse que las bacterias sobrevivirían a más de 100 ºC. No obstante, en los años '70, se descubrió que había bacterias que vivían en los géiseres del Parque Nacional de Yellowstone (Estados Unidos).
La vida microbiana se ha adaptado a la salinidad, a la temperatura, al pH, a la aridez, a la radiación, y a la presión. Durante años se pensó que uno de los lugares más desérticos de la Tierra -el desierto de Atacama en Chile- era estéril, pero al mirar en el interior de las rocas se observó todo tipo de vida. Río Tinto en Huelva es otro de los lugares "más fascinantes de la Tierra", para Nealson. "Muchos de estos entornos extremos te hacen pensar de forma diferente sobre la posibilidad de encontrar vida en otros planetas, y Río Tinto en Huelva es uno de ellos", apunta.
Desde que empezó a conocer la habilidad de las bacterias, el interés de Nealson por hallar vida microbiana fuera de la Tierra creció. Las misiones del telescopio espacial Hubble han sido determinantes en este sentido.
En los últimos 10 años, sus datos han demostrado que existen millones de planetas que se parecen a la Tierra. "Pero estos planetas están a muchos años luz de nosotros. Incluso si obtienes una señal de alguno de ellos (una que se pudo generar hace 100 años), llevará 1.000 años llegar allí a la velocidad a la que viajamos ahora. Es fascinante pero frustrante a la vez", manifiesta el experto, que lo tiene claro: "Es 100% seguro que hay vida ahí fuera".
El problema es cómo encontrarla. "Cuando una misión de la NASA planea ir a Júpiter o Saturno -al que se tarda ocho años en llegar-, o incluso más lejos, a Neptuno, el tiempo de ir y volver, has perdido un tercio de tu carrera, y a lo mejor fracasa", señala.
Vida en el sistema solar
Sin salir del sistema solar, desde el punto de vista de un microbiólogo, hay diferentes lugares en los que algunos organismos que habitan la Tierra podrían sobrevivir. Por ejemplo las lunas de Júpiter: Europa, Calisto y Ganímedes. "No sabemos exactamente lo grueso que es el hielo ni cómo es el agua debajo, pero seguro que en cada una de estas lunas hay más agua de la que tenemos en la Tierra", señala Nealson. El agua líquida es esencial para vida como la nuestra pero "lo que es esencial es el líquido".
Otro lugar donde buscar es una luna de Saturno, Encélado, que rodea uno de los anillos del planeta. "Siempre ha tenido agua congelada". Titán, otra de las lunas de Saturno, "no tendría vida como la conocemos porque hace demasiado frío", pero tiene metano y etano líquidos. "Supongo que hay diferente tipo de vida allí", insiste el investigador que asegura que esta vida sería "tan rara" que "ninguna de las reglas de química con las que hemos crecido tendría entonces sentido".
"Si no piensas en cosas como estas te vuelves muy geocéntrico sobre la búsqueda de vida y te perderías cosas muy interesantes. Sea el tipo de vida que sea, va a necesitar energía y deberíamos ser capaces de ver los lugares donde la energía es consumida".
Hasta que se descubran los primeros indicios de vida extraterrestre, hay mucho trabajo por hacer en la Tierra, porque "aún se desconoce el potencial de la microbiología y es una oportunidad mayor de lo que uno imagina". Uno de los ejemplos que da Nealson es la corrosión (de buques, cañerías, etc.) en Estados Unidos, que supone un gasto de más de 200.000 millones dólares al año. La inversión en el estudio de los microbios que provocan la corrosión "sería un avance". Solo con reducir un 2% el ritmo de la corrosión, se recuperarían 400 millones dólares al año."Ahora toca convencer para obtener financiación", afirma el investigador.
Y para convencer basta con recordar que el 99,9% de las bacterias son nuestras amigas. Muy pocas son realmente dañinas. "El planeta y el cuerpo humano funcionan gracias a las bacterias buenas. Lo único es que todavía no hemos aprendido esta lección", concluye Nealson.
No hay comentarios:
Publicar un comentario